treebuilder Documentation
Release 0.1

nate skulic

May 12, 2012

CONTENTS

1 Welcome! 1
1.1 Treebuilder Features e e e e e 1
1.2 Installing treebuilder L 1
1.3 Usingtreebuilder e e e e e e e e 3
1.4 Configuration File e e e e e e e 5
15 Commands e e 7
1.6 TOOIS e e e e 12
1.7 Treebuilder Development L 12
2 Indices and tables 15

CHAPTER
ONE

WELCOME!

Treebuilder is a tool designed for rapid development of system images.

In addition to building images, live or otherwise, it can be used as a type of distributed installation tool (such as
kickstart).

NOTE : Api/names might change. Still working out the verbage.
PDF Version of this documentation: http://media.readthedocs.org/pdf/treebuilder/latest/treebuilder.pdf

Contents:

1.1 Treebuilder Features

Build live images, install/upgrade systems over the network or via disk/stick and define configuration all from one
tool.

 Lightweight text-mode installer included

* Installer capable of retrieving configuration and packages from a network/server

* Build live installer images (iso)

» Custom repository integration - Integrate your own repositories into the installer or installed system

¢ Full machine description:

disk: partitioning, raid

package installation

firewall

authentication (pam/ssh)

network devices - specify match expressions to configure network devices

general machine configuration including: hostname, timezone, selinux, users/password and keyboad
» Hooks for scripting machine configuration pre and post processing

* Grub2 and latest boot support

1.2 Installing treebuilder

1.2.1 Requirements

« PyYAML

* reparted

http://media.readthedocs.org/pdf/treebuilder/latest/treebuilder.pdf

treebuilder Documentation, Release 0.1

e progressbar == 2.2
* distutils/setuputils
Treebuilder also requires some dependencies not found in the python package index, including:
¢ libuser-python
 dbus-python

* yum

1.2.2 Releases

Stable releases will be available as rpm packages shortly. Pushing the tool into other distros is being considered.
Fedora: maintainer/sponsor needed.

1.2.3 Using pip/easy_install

A common way to install python packages is using pip (or the outdated easy_install):

easy_install https://bitbucket.org/nateskulic/treebuilder/get/tip.tar.gz

pip install https://bitbucket.org/nateskulic/treebuilder/get/tip.tar.gz

1.2.4 From source

Treebuilder can be obtained from https://bitbucket.org/nateskulic/treebuilder:

hg clone https://bitbucket.org/nateskulic/treebuilder

Using a virtualenv

As many of the packages treebuilder depends on are not available through pypi but rather through distribution
specific packages, make sure to use the —system-site-packages with virtualenv to include these packages. And
example of a proper virtualenv command is below:

virtualenv .virtual --distribute --system-site-packages

Enter the virtual environment:

source .virtual/bin/active

Installing

Like any standard python package, distutils and setup.py can be used to install treebuilder. There are numerous
way to setup and distribute package using setupyools/distutils and it is recommend that you consult their docu-
mentation.

For example, the following command will install a link into your .virtual/lib/pythonx.x/site-packages/treebuilder
to the you have checked out treebuilder:

./setup.py develop

2 Chapter 1. Welcome!

https://bitbucket.org/nateskulic/treebuilder

treebuilder Documentation, Release 0.1

1.3 Using treebuilder

1.3.1 General usage

You must first define a configuration file. Some example configurations are in the examples directory.
To run the commands use:

sudo ./buildtree.py [path to yaml]

sudo ./buildtree.py examples/installer/iso.tree

1.3.2 Usage

usage: buildtree.py [-h] [-r ROOT] [-]1 LOGFILE] [-s SKIP] [-b BUILD] [-list-tools] [—list-
commands] [-d] [-v] [-w] config_file

positional arguments: config_file Yaml configuration file.

optional arguments:
-h, --help show this help message and exit
-r ROOT, --root ROOT Override the install_root configuration.
-1 LOGFILE, --logfile LOGFILE Output to a logging file.

-s SKIP, --skip SKIP Skip to a command. Valid commands:
install. RunPreScripts, install.ZeroMBR, in-
stall.CreatePartitions, install.CreateRaid, in-
stall. FormatPartitions, yum.Prepare, yum.Install,
yum.RunTxn, yum.RemovePackages, setup.Fstab,
setup.RootPassword, setup.KeyboardLayout,
setup.Authconfig, setup.SELinux, setup.TimeZone,
setup.Network, setup.Firewall, setup.Hostname,
setup.SysLog, installer.EmbedInstaller, in-
staller.InstallTreebuilderService, installer. EmbedTree,
install. RunPostScripts, yum.Mirror, yum.CreateRepo,
installer.BuildInstallerlmage, install.InstallBootloader,
install. RaidPostlInstall, install.Cleanup

-b BUILD, --build BUILD Build directory

--list-tools List tools and their help.

--list-commands List commands and their help.

-d, --debug Debug mode. Outputs heavier logging.

-v, --verbose Verbose/debug ui mode. Allow verbose debug message to

pass up to the ui.

-w, --wait Dont exit right away. Wait for a input/keypress.

1.3.3 Included trees

¢ Treebuilder installer

* Fedora - minimal, gnome (possibly cinnamon) desktop, live desktop/rescue image (ALL COMING SOON.
TESTING/HELP APPRECIATED).

treebuilders commands can depend on one another.

1.3. Using treebuilder 3

treebuilder Documentation, Release 0.1

1.3.4 Building trees
1.3.5 Executing commands directly

-€

1.3.6 Jumping to commands and Modifying the sequence
_j _s

1.3.7 Creating a treebuilder installer

Create an installer image

First you must generate an install.iso:

sudo ./buildtree.py examples/installer/iso.tree

The iso.tree specifies that it should embed examples/minimal.tree and its required packages into the iso.

An install.iso should be generated in the current directory after running this command.

Run the installer image
Booting this iso will begin the installation as specified in examples/installer/iso.tree (and the included exam-
ples/minimal.tree).

An alternate tree file can be specified at kernel boot by specifying the kernel option tree.config as an absolute url
to a tree file. This allows tree files (and everything they require) to reside in a remote location.

If testing load the output iso into virt-manage or gemu.
Treebuilder developers use gemu for testing treebuilder.
First create a disk image (or two+ if testing raid); noted as diskl.img in the following:

gemu-img create diskl.img 10G

An approriate command to test an image would be:

gemu-system-x86_64 —-cdrom install.so -hda diskl.img —append "console=ttySO0 console=tty0 debug" -n

Or if testing the kernel/initrd directly:

gemu-system-x86_64 -kernel isoroot/isolinux/vmlinuz -initrd isoroot/isolinux/initrd.img -append
“console=ttyS0 console=ttyQ debug” -nographic -m 700

The above command will output the kernel message to your console.

A killall gemu-system-x86_64 might be required due to the console takeover.

Real testing should happen on real machines.

If you just want to update the tree included with the iso, and rebuild the iso then use:

buildtree.py path/to/tree.tree -v -e treebuilder. EmbedTree -e treebuilder.Image

4 Chapter 1. Welcome!

treebuilder Documentation, Release 0.1

Structure of a Treebuilder installer iso

* isolinux/isolinux.cfg - Syslinux configuration file.

¢ isolinux/initrd.img - Treebuilder root initramfs image.

* isolinux/vmlinuz - Matching kernel for treebuilder root.

» Packages - A rpm repository of packages to install.

» Packages/repodata - A directory containing the repository metadata.

« install.tree - A tree included with iso. This tree will be installed when the iso is booted.

1.3.8 TODO: Create live images

¢ Live/rescue disks

1.3.9 Notes

Note: a root environment is required due to the way yum/rpm install packages. This might be fixed later. Overrid-
ing the system.chroot tool to use mock instead of an actual chroot; and hacking through rpm/yum should fix this.
possibly needed is user mounting capability.

1.4 Configuration File

1.4.1 Description

Treebuilder *.tree files have the following properties:
 Are standard yaml files.
¢ Are in a mostly declarative syntax.
» Are CASE SENSITIVE.
» Can refer to other files and paths relative to the tree file or in another remote location.
* Can “inherit” from other tree files to allow for less duplication and manageable configurations.

It is recommended that one uses two space indentation for tree/yaml files so that everything lines up easily.

1.4.2 Examples

The default base treebuilder installer yaml:

A Base install tree
Contains a configuration suitable for working with treebuilder
install_root: /mnt/sysroot
locales: ["en_US’",’en’]
yum:
prepare:
release: 16
architecture: x86_64
repos:
— name: Fedorareleasever-basearch
#url: "http://download.fedoraproject.org/pub/fedora/linux/releases/Sreleasever/Everything/$s
#type: url
url: "https://mirrors.fedoraproject.org/metalink?repo=fedora-$releasever&arch=Sbasearch"
type: metalink

1.4. Configuration File 5

treebuilder Documentation, Release 0.1

- name: Fedorareleasever—-basearch-Updates
#url: "http://download.fedoraproject.org/pub/fedora/linux/updates/Sreleasever/S5basearch/"
#type: url
url: "https://mirrors.fedoraproject.org/metalink?repo=updates-released-fS$releasever&arch=5$b
type: metalink

AT THIS POINT EVERYTHING IS MOUNTED UNDER install_root
setup:
root_password: root

keyboard:
layout: us

authconfig:
USESHADOW: yes
PASSWDALGORITHM: shab12

hostname:
name: installed

timezone: UTC

selinux:
mode: disabled

network:
devices:
— match: [’class=ethernet’]
bootproto: ’dhcp’

And a minimal install tree from which it derives:

treebuilder — A minimal system image
include:
— base.tree

partitions:
- disk: sda
partitions:

- name: bios-boot
type: primary
size: 1
flags:

bios_grub: True

- name: boot
type: primary
size: 500

- name: swap
type: primary
size: 1000

- name: root
type: primary
size: grow

format:
- mount: /boot
fs: ext4d

device: sdaz

— mount: swap

6 Chapter 1. Welcome!

treebuilder Documentation, Release 0.1

fs:

— mount:

fs:

swap
device: sda3

/

ext4
device: sda4

bootloader:
location: mbr
ignore: []

disks:

yum:

["sda’]

install:
packages:

fedora-release
kernel

python

vi

dhclient

grub2
e2fsprogs
parted

yum

htop
libuser-python

setup
fstab:
include:
— UUID=%(uuid./dev/sda4d)s / ext4 defaults,discard, noatime
— UUID=% (uuid./dev/sda2)s /boot ext4 defaults,discard, noatime
- UUID=% (uuid./dev/sda3)s swap swap defaults 0 0
- none /dev/pts devpts gid=5,mode=620 0 0
- none /dev/shm tmpfs defaults 00
- none /proc proc defaults 00
- none /sys sysfs defaults 0 0

1.5 Commands

Commands can be defined in any of the input, processing or output sequences.

The hardcoded command sequence is:

install

install.
install.
install.
.FormatPartitions

install

.RunPreScripts

ZeroMBR
CreatePartitions
CreateRaid

yum.Prepare
yum.Install
yum.RunTxn
yum.RemovePackages

setup
setup

setup

setup.
setup.
.Network

setup

.Fstab
.RootPassword
setup.

KeyboardLayout

.Authconfig

SELinux
TimeZone

1.5. Commands 7

treebuilder Documentation, Release 0.1

setup.Firewall

setup.Hostname

setup.SysLog
installer.EmbedInstaller
installer.InstallTreebuilderService
installer.EmbedTree
install.RunPostScripts
yum.Mirror

yum.CreateRepo
installer.BuildInstallerImage
install.InstallBootloader
install.RaidPostInstall
install.Cleanup

Commands expect configuration values in specific places in the tree file. Documentation under each command

defines an example configuration and its expected values.

Run the program with —list-commands to output a nicely formatted documentation of all possible commands.

1.5.1 Built-in Commands
General Commands

class install.Raid
Creates raid devices from components.

Example:
CreateRaid:
devices:
— device_name: mdO
level: 1
components: [’sda2’, ’sdb2’]

metadata: 1.1

class install.InstallBootloader
sets up the bootloader on specified disks

can specify the target disk(s), the disks to skip, additional grub2-install parameters, and the path future boot

partition is mounted to.

creates a grub on the mbr (for now) of all so specified disks, or all disks.

class install.RunPostScripts
class install .RunPreScripts

class setup.Authconfig

simply copying yaml lines to authconfig file.

install_root + any lines to copy should be in the config param

class setup.Firewall

Punches holes in the firewall. Incoming traffic is blocked by default. Outgoing traffic is permitted unless

one specifies ‘incoming_*’ options.

One can specify ports to open either by service names, or explicitly by port numbers.

‘ports’ will open both tcp and udp outgoing traffic on listed ports. ‘udp’ and ‘tcp’ will open only udp or tcp

ports, respectively.

‘incoming_ports’, ‘incoming_udp’, ‘incoming_tcp’ will do the equivalent for incoming ports.

‘services’ option sets relevant outgoing tcp & udp ports. ‘protocols’ option enables additional protocols,

beyond tcp, udp.

Chapter 1. Welcome!

treebuilder Documentation, Release 0.1

class setup.Fstab
Creates an fstab in the install root.

Args include - list - A list of lines to write into the fstab file.

class setup.Hostname
sets the hostname

Args name - string - the desired hostname

class setup.KeyboardLayout
sets the keybord layout and other keyboard parameters.

if given ‘name’ in the parameter dictionary, will use it for both KEYTABLE and LAYOUT fields in the cfg
file. any (further) fields will be copied from the yaml.

if MODEL is not specified, defaults it to pc105+inet

class setup.Network
finds network devices, creates fixed names for them, ordered by bus, creates ifcfg files by spec, creates static
resolv.conf, if any explicit domain and dns servers

class setup.RootPassword
Sets the root password to the argument name password.

class setup.SELinux
selects SELinux mode

Args
mode - string - should be either permissive, enforcing or disabled.

class setup.TimeZone
selecting the timezone.

selects the timezone. relevant file is expected to exist in /usr/share/zoneinfo. also updates the sysconfig file,
albeit I gather that has no effect on the zone selection itself.

Yum Commands

The commands are for working with the yum package manager.

class yum.Prepare
Prepares for typical install root package transactions.

Bootstraps a yum/rpm environment in the install root (/var/lib/{rpm,yum}, etc.).
An example:

PrepareYum:

release: 16

architecture: x86_64

repos:

Affix ourself to the release repo so we arent a moving target with updates

If needed, be selective about packages from updates.

- name: Fedorareleasever-basearch
url: http://download.fedoraproject.org/pub/fedora/linux/releases/Sreleasever/Everythinc
mirrorlist: https://mirrors.fedoraproject.org/metalink?repo=fedora-$releasever&arch=5$be

Treebuilder needs some of its own tools not in the distros repo
— name: Treebuilder
url: file://./repo

Args:
* cache_dir - str - optional. path to a cache directory

* repos - list - a list of repo defitions. Each repo defintion

1.5. Commands 9

treebuilder Documentation, Release 0.1

* requires at least name and a url or mirrorlist.

class yum. Install

Installs packages using yum.

Args packages - list - a list of package globs

class yum.Remove

Prepares for typical install root package transactions.
Packages and their files defined in yum.Install will be stripped depending on how they are negated.
Args:

repos - list - a list of repo defitions. Each repo defintion

requires at least name and a url or mirrorlist.

class yum.Mirror

The mirror command copys packages from repositories into a single destination.
This is useful if you need to create install disks with all the packages inside.
This is typically used to create the “Packages” directory in the treebuilder installer image.

An example:

yum:
Mirror:

packages_from: ../minimal.tree

destination: isoroot/Packages

release: 16

architecture: x86_64

resolve: True

repos:

- name: Fedorareleasever-basearch
url: http://download.fedoraproject.org/pub/fedora/linux/releases/Sreleasever/Everyt
mirrorlist: https://mirrors.fedoraproject.org/metalink?repo=fedora-$releasevergarct

- name: Fedorareleasever-basearch-Updates
url: http://download.fedoraproject.org/pub/fedora/linux/updates/Sreleasever/Sbasear
mirrorlist: https://mirrors.fedoraproject.org/metalink?repo=updates-released-source

Args
edestination - Destination folder to put downloaded packages
erelease - release variable
earchitecture - architecture variable.
erepos - list - A list of dictionaries specifying the repositories to download packages from.
eresolve - boolean - If true, resolve package dependencies.
epackages - list - A list of package globs
*packages_from - path to a tree to pull a pacakge list from
Repos list item
name - string - name of the repository
one of url or mirrorlist optional
url - specifies the url of the repository

mirrorlist - specifies the location of a mirrorlist for the repository

10

Chapter 1. Welcome!

treebuilder Documentation, Release 0.1

“Live” Disk Commands

class 1ive.buildiso

class 1ive.BuildLiveImage
Builds a live image

Args
disklabel - string - label stored in .discinfo
rootlabel - string - Label of the live root filesystem
isolabel - string - Label of the iso
isolinuxcfg - string - relative or absolute path of isolinux.cfg to include

syslinux_source - relative or absolute path to where syslinux binaries can be found (eg
isolinux.bin, vesamenu)

Installer Commands

Installer commands are defined to help build the treebuilder installer

class treebuilder.EmbedInstaller
Embeds the treebuilder installer into the install_root.

class treebuilder.Image
Builds a live installer image

1.5.2 Writing commands

Treebuilder can be easily extended by adding additional commands.

Matching names from args in the tree file are passed to the respective command as arguments. The default
Command implementation makes the dictionary available in Command.args (self.args) for the subsequent call of
the commands run method.

Commands are registered by subclassing the Command class and defining the __register__ property. This allows
commands to be discovered by treebuilder easily.

TODO: in your configuration define command_search_paths to a python package (with an __init__.py) where
commands can be found. Treebuilder will automatically search the directory for any classes deriving from Com-
mand.

Command api

class treebuilder.command.Command (args)
The command class is used to encapsulate various “commands” that treebuilder can peform.
Subclasses of this are automatically registered using metaclasses.

SIGNAL_COMMAND_FINISH = <treebuilder.signals.Signal instance at 0x2e08368>
This signal is called just after the command is finished.

SIGNAL_COMMAND_PROGRESS = <treebuilder.signals.Signal instance at 0x2e08320>
This signal is called just before the command is started.

Its sig looks like:
handle_progress(command, percent=None, level=None, message="")

SIGNAL_COMMAND_START = <treebuilder.signals.Signal instance at 0x2d711b8>
This signal is called just before the command is started.

1.5. Commands 11

treebuilder Documentation, Release 0.1

run (config)
Run the command, using the passed configuration object.

1.6 Tools

A tool registry is defined so that tools can be defined and possibly re-defined anywhere.

1.6.1 Tool Api

treebuilder.tool.register_tool (name)
This is a decorator intended to allow registration of tools plugins under tools. in the global plugin registry

treebuilder.tool.get_tool (name)
Returns a tool defined by name.

treebuilder.tool.get_tools ()
Returns a dictionary of all registered tools.

1.6.2 Available Tools

TODO: tool documenter required.
Refer to treebuilder/tools for now. Anything decorated with register_tool can be used by commands.

Run the program with —list-tools to output a nicely formatted documentation of all tools.

1.7 Treebuilder Development

Most installations can be generalized into three stages: input/gather/pre-processing, processing/install and post-
processing/output. Treebuilder was designed with this in mind.

Commands, and their tools, are automatically searched by treebuilder and gathered into a registry (refer to tree-
builder.plugins, treebuilder.tool, treebuilder.command).

A standard yaml parser reads the config file and passes off the various stages to a treebuilder.command.Runner.
The Runner loops through the command list, performing each command as specified, pulling in matching args
defined in the tree file.

Roughly, the execution order of treebuilder looks something like:

* Input stage - optional. this stage prepares for the processing stage. The entire installation (configuration,
packages and files) can be made available via local or remote sources.

— Configuration - make a configuration file available (from local or remote). read the configuration file
and find out what files and packages are needed. if a remote configuration file is specified download it
into memory.

— Packages - download them into a cache if needed.

— Files - if the configuration file is remote, the required files will need to be downloaded to the machine.
prepare them for copy (possibly templatize).

* Pre command stage scripts - run python scripts before the command stage
* Processing stage - a series of commands are run in order to produce the tree
— Storage
* Prepare storage - commands to prepare the disks, partitions and filesystems

— Install packages

12 Chapter 1. Welcome!

treebuilder Documentation, Release 0.1

— Configure system - various commands to configure the system.
— Install bootloader - commands to configure and install the bootloader

* Post command stage scripts - run python scripts after the processing stage in a optionally chrooted environ-
ment

* Output stage - optional. this stage are used to create live disk, pxe or initrd images.

— Output commands - optional. these commands are used to create live disk, pxe or initrd images.

1.7.1 Core API

class treebuilder.command.Runner
Runs the specified stage defined in config.

config - the global configuration object. commandconflist - should be a list of dicts representing commands.

treebuilder.tool.register_tool (name)
This is a decorator intended to allow registration of tools plugins under tools. in the global plugin registry

treebuilder.tool.search tools()

treebuilder.command.search_commands ()

1.7.2 Treebuilder installer development
Create TWO virt-manager or virtualbox virtual machines. One to test the installer and one to test the installed.
This can be done easily using virt-manager and shared disks.

Make sure these virtual machines can access the network and can talk back and forth with your machine. A
bridged connection usually suffices. These matchines should have matching devices (including macs). “virsh
edit” is the only way to accomplish this libvirtd.

To work on the treebuilder installer:
1. Clone the treebuilder source
2. On your machine build an installer image (install.iso):

buildtree.py examples/installer/iso.tree

3. Boot the install.iso generated by the above in one of the virtual machines. After booted, ctrl+alt+F2 to enter
a command shell and ctrl+alt+F3 to enter a process manager (htop).

4. By default treebuilder will begin the installation as specified by the configuration file embedded in the iso.
(TODO: a way to stop this from boot. For now: Stop the default installer process (killall python or find and
kill the process in htop))

5. Connect to the treebuilder source you checked out:

mkdir /mnt/tb
sshfs root@<your ip>:<path to treebuilder source> /mnt/tb

6. Develop on your machine and test on the virtual machine:

/mnt/tb/buildtree.py /mnt/tb/examples/minimal.tree -d -dui

7. As soon as the install is finished, you may unmount /mnt/sysroot/proc, /mnt/sysroot/dev, /mnt/sysroot/sys,
/mnt/sysroot/boot and /mnt/sysroot and boot the disk in the second image; while the installer is still running.

8. If you are not satisified, run step 6 again to reinstall.

1.7. Treebuilder Development 13

treebuilder Documentation, Release 0.1

1.7.3 Building a ui around treebuilder

Treebuilder uses a type of signals framework for notifying a calling program of status and progress.
These signals can be found under treebuilder/command.py and treebuilder/tool.py.

Command . SIGNAL_COMMAND_START = <treebuilder.signals.Signal instance at 0x32f9368>
This signal is called just before the command is started.

Command . SIGNAL_COMMAND_PROGRESS = <treebuilder.signals.Signal instance at 0x34034d0>
This signal is called just before the command is started.

Its sig looks like:
handle_progress(command, percent=None, level=None, message="")

Command . SIGNAL_COMMAND_FINISH = <treebuilder.signals.Signal instance at 0x3403518>
This signal is called just after the command is finished.

Tool.SIGNAL_TOOL_START = <treebuilder.signals.Signal instance at 0x32eccb0>
This signal is called when a tool is started

Tool.SIGNAL_TOOL_PROGRESS = <treebuilder.signals.Signal instance at 0x32eccf8>
This signal is called when a tool makes progress.

Its sig is handle_progress(tool, progressdata=None, level=None, message="")

Tool.SIGNAL_TOOL_FINISH = <treebuilder.signals.Signal instance at 0x32ecdd(>
This signal is called when a tool is finished

Treebuilder has a built in command line/terminal “user interface”. An example of how it connects and uses those
signals can be found in treebuilder/ui/cli/handlers.py.

Useful notes: http://fedoraproject.org/wiki/Anaconda/Stage2DevelopmentGuide
http://fedoraproject.org/wiki/Anaconda/Stage 1 DevelopmentGuide

1.7.4 Source Overview

¢ docs - this documentation

» examples - example trees and configurations

* treebuilder -

¢ treebuilder/commands - commands are sorted here
* treebuilder/tools - tools that commands use

* treebuilder/ui - user interfacing layers

14 Chapter 1. Welcome!

http://fedoraproject.org/wiki/Anaconda/Stage2DevelopmentGuide
http://fedoraproject.org/wiki/Anaconda/Stage1DevelopmentGuide

CHAPTER
TWO

* genindex
* modindex

INDICES AND TABLES

15

	Welcome!
	Treebuilder Features
	Installing treebuilder
	Using treebuilder
	Configuration File
	Commands
	Tools
	Treebuilder Development

	Indices and tables

